Disclosed herein is a three-dimensional cellular light structure formed of continuous wire groups. In the cellular light structure, six orientational helical wire groups are intercrossed each other at 60 degrees or 120 degrees of angles in a three-dimensional space to thereby form a uniform pattern and having a good mechanical property such as strength, rigidity or the like. A method of mass-producing the structure in a cost-effective manner is also disclosed. The three-dimensional cellular light structure has a similar form to the Kagome truss. According to the manufacturing method of the three-dimensional cellular light structure of the present invention, a frame assembly consisting of rectangular frames and connection support bars is used, when the 1st, 2nd, 3rd, 4th, 5th and 6th-axis helical wires are assembled. In addition, the manufacturing method is characterized by comprising a step of arranging and fixing the 1st, 2nd and 3rd-axis wires on the frames to form a plurality of two-dimensional Kagome planes, a step of connecting the frames by means of connection support bars, and a step of assembling the 4th, 5th and 6th-axis wires to fabricate a three-dimensional cellular light structure. When required, the intersection points of the wires are bonded by means of welding, brazing, soldering, or a liquid-or-spray-form adhesive to provide a structural material having a light weight and a good mechanical strength and rigidity, it can be made into a fiber-reinforced composite material by filling part of or entire internal empty space of the structure.
Originalartikel lesen